Taking what they learned conceptually about artificial intelligence and machine learning (ML) this year, students from across the Greater Boston area had the opportunity to apply their new skills to real-world industry projects as part of an experiential learning opportunity offered through Break Through Tech AI at MIT.

Hosted by the MIT Schwarzman College of Computing, Break Through Tech AI is a pilot program that aims to bridge the talent gap for women and underrepresented genders in computing fields by providing skills-based training, industry-relevant portfolios, and mentoring to undergraduate students in regional metropolitan areas in order to position them more competitively for careers in data science, machine learning, and artificial intelligence.

“Programs like Break Through Tech AI gives us opportunities to connect with other students and other institutions, and allows us to bring MIT’s values of diversity, equity, and inclusion to the learning and application in the spaces that we hold,” says Alana Anderson, assistant dean of diversity, equity, and inclusion for the MIT Schwarzman College of Computing.

The inaugural cohort of 33 undergraduates from 18 Greater Boston-area schools, including Salem State University, Smith College, and Brandeis University, began the free, 18-month program last summer with an eight-week, online skills-based course to learn the basics of AI and machine learning. Students then split into small groups in the fall to collaborate on six machine learning challenge projects presented to them by MathWorks, MIT-IBM Watson AI Lab, and Replicate. The students dedicated five hours or more each week to meet with their teams, teaching assistants, and project advisors, including convening once a month at MIT, while juggling their regular academic course load with other daily activities and responsibilities.

Related work from others:  Latest from MIT : Electrochemistry, from batteries to brains

The challenges gave the undergraduates the chance to help contribute to actual projects that industry organizations are working on and to put their machine learning skills to the test. Members from each organization also served as project advisors, providing encouragement and guidance to the teams throughout.

“Students are gaining industry experience by working closely with their project advisors,” says Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing and the MIT director of the MIT-IBM Watson AI Lab. “These projects will be an add-on to their machine learning portfolio that they can share as a work example when they’re ready to apply for a job in AI.”

Over the course of 15 weeks, teams delved into large-scale, real-world datasets to train, test, and evaluate machine learning models in a variety of contexts.

In December, the students celebrated the fruits of their labor at a showcase event held at MIT in which the six teams gave final presentations on their AI projects. The projects not only allowed the students to build up their AI and machine learning experience, it helped to “improve their knowledge base and skills in presenting their work to both technical and nontechnical audiences,” Oliva says.

For a project on traffic data analysis, students got trained on MATLAB, a programming and numeric computing platform developed by MathWorks, to create a model that enables decision-making in autonomous driving by predicting future vehicle trajectories. “It’s important to realize that AI is not that intelligent. It’s only as smart as you make it and that’s exactly what we tried to do,” said Brandeis University student Srishti Nautiyal as she introduced her team’s project to the audience. With companies already making autonomous vehicles from planes to trucks a reality, Nautiyal, a physics and mathematics major, shared that her team was also highly motivated to consider the ethical issues of the technology in their model for the safety of passengers, drivers, and pedestrians.

Related work from others:  Latest from Google AI - Open Source Vizier: Towards reliable and flexible hyperparameter and blackbox optimization

Using census data to train a model can be tricky because they are often messy and full of holes. In a project on algorithmic fairness for the MIT-IBM Watson AI Lab, the hardest task for the team was having to clean up mountains of unorganized data in a way where they could still gain insights from them. The project — which aimed to create demonstration of fairness applied on a real dataset to evaluate and compare effectiveness of different fairness interventions and fair metric learning techniques — could eventually serve as an educational resource for data scientists interested in learning about fairness in AI and using it in their work, as well as to promote the practice of evaluating the ethical implications of machine learning models in industry.

Other challenge projects included an ML-assisted whiteboard for nontechnical people to interact with ready-made machine learning models, and a sign language recognition model to help disabled people communicate with others. A team that worked on a visual language app set out to include over 50 languages in their model to increase access for the millions of people that are visually impaired throughout the world. According to the team, similar apps on the market currently only offer up to 23 languages. 

Throughout the semester, students persisted and demonstrated grit in order to cross the finish line on their projects. With the final presentations marking the conclusion of the fall semester, students will return to MIT in the spring to continue their Break Through Tech AI journey to tackle another round of AI projects. This time, the students will work with Google on new machine learning challenges that will enable them to hone their AI skills even further with an eye toward launching a successful career in AI.

Related work from others:  Latest from MIT Tech Review - AI that makes images: 10 Breakthrough Technologies 2023

Similar Posts