As organizations weave AI into more of their operations, senior executives are realizing data engineers hold a central role in bringing these initiatives to life. After all, AI only delivers when you have large amounts of reliable and well-managed, high-quality data. Indeed, this report finds that data engineers play a pivotal role in their organizations as enablers of AI. And in so doing, they are integral to the overall success of the business.

According to the results of a survey of 400 senior data and technology executives, conducted by MIT Technology Review Insights, data engineers have become influential in areas that extend well beyond their traditional remit as pipeline managers. The technology is also changing how data engineers work, with the balance of their time shifting from core data management tasks toward AI-specific activities.

As their influence grows, so do the challenges data engineers face. A major one is dealing with greater complexity, as more advanced AI models elevate the importance of managing unstructured data and real-time pipelines. Another challenge is managing expanding workloads; data engineers are being asked to do more today than ever before, and that’s not likely to change.

Key findings from the report include the following:

Data engineers are integral to the business. This is the view of 72% of the surveyed technology leaders—and 86% of those in the survey’s biggest organizations, where AI maturity is greatest. It is a view held especially strongly among executives in financial services and manufacturing companies.

AI is changing everything data engineers do. The share of time data engineers spend each day on AI projects has nearly doubled in the past two years, from an average of 19% in 2023 to 37% in 2025, according to our survey. Respondents expect this figure to continue rising to an average of 61% in two years’ time. This is also contributing to bigger data engineer workloads; most respondents (77%) see these growing increasingly heavy.

Related work from others:  Latest from MIT : Building explainability into the components of machine-learning models

Download the report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Share via
Copy link
Powered by Social Snap