Welcome back to The State of AI, a new collaboration between the Financial Times and MIT Technology Review. Every Monday, writers from both publications debate one aspect of the generative AI revolution reshaping global power. You can read the rest of the series here.

In this final edition, MIT Technology Review’s senior AI editor Will Douglas Heaven talks with Tim Bradshaw, FT global tech correspondent, about where AI will go next, and what our world will look like in the next five years.

(As part of this series, join MIT Technology Review’s editor in chief, Mat Honan, and editor at large, David Rotman, for an exclusive conversation with Financial Times columnist Richard Waters on how AI is reshaping the global economy. Live on Tuesday, December 9 at 1:00 p.m. ET. This is a subscriber-only event and you can sign up here.)

Will Douglas Heaven writes: 

Every time I’m asked what’s coming next, I get a Luke Haines song stuck in my head: “Please don’t ask me about the future / I am not a fortune teller.” But here goes. What will things be like in 2030? My answer: same but different. 

There are huge gulfs of opinion when it comes to predicting the near-future impacts of generative AI. In one camp we have the AI Futures Project, a small donation-funded research outfit led by former OpenAI researcher Daniel Kokotajlo. The nonprofit made a big splash back in April with AI 2027, a speculative account of what the world will look like two years from now. 

The story follows the runaway advances of an AI firm called OpenBrain (any similarities are coincidental, etc.) all the way to a choose-your-own-adventure-style boom or doom ending. Kokotajlo and his coauthors make no bones about their expectation that in the next decade the impact of AI will exceed that of the Industrial Revolution—a 150-year period of economic and social upheaval so great that we still live in the world it wrought.

At the other end of the scale we have team Normal Technology: Arvind Narayanan and Sayash Kapoor, a pair of Princeton University researchers and coauthors of the book AI Snake Oil, who push back not only on most of AI 2027’s predictions but, more important, on its foundational worldview. That’s not how technology works, they argue.

Advances at the cutting edge may come thick and fast, but change across the wider economy, and society as a whole, moves at human speed. Widespread adoption of new technologies can be slow; acceptance slower. AI will be no different. 

What should we make of these extremes? ChatGPT came out three years ago last month, but it’s still not clear just how good the latest versions of this tech are at replacing lawyers or software developers or (gulp) journalists. And new updates no longer bring the step changes in capability that they once did. 

Related work from others:  Latest from MIT : Generative AI for smart grid modeling

And yet this radical technology is so new it would be foolish to write it off so soon. Just think: Nobody even knows exactly how this technology works—let alone what it’s really for. 

As the rate of advance in the core technology slows down, applications of that tech will become the main differentiator between AI firms. (Witness the new browser wars and the chatbot pick-and-mix already on the market.) At the same time, high-end models are becoming cheaper to run and more accessible. Expect this to be where most of the action is: New ways to use existing models will keep them fresh and distract people waiting in line for what comes next. 

Meanwhile, progress continues beyond LLMs. (Don’t forget—there was AI before ChatGPT, and there will be AI after it too.) Technologies such as reinforcement learning—the powerhouse behind AlphaGo, DeepMind’s board-game-playing AI that beat a Go grand master in 2016—is set to make a comeback. There’s also a lot of buzz around world models, a type of generative AI with a stronger grip on how the physical world fits together than LLMs display. 

Ultimately, I agree with team Normal Technology that rapid technological advances do not translate to economic or societal ones straight away. There’s just too much messy human stuff in the middle. 

But Tim, over to you. I’m curious to hear what your tea leaves are saying. 

FT/MIT TECHNOLOGY REVIEW | ADOBE STOCK

Tim Bradshaw responds

Will, I am more confident than you that the world will look quite different in 2030. In five years’ time, I expect the AI revolution to have proceeded apace. But who gets to benefit from those gains will create a world of AI haves and have-nots.

It seems inevitable that the AI bubble will burst sometime before the end of the decade. Whether a venture capital funding shakeout comes in six months or two years (I feel the current frenzy still has some way to run), swathes of AI app developers will disappear overnight. Some will see their work absorbed by the models upon which they depend. Others will learn the hard way that you can’t sell services that cost $1 for 50 cents without a firehose of VC funding.

How many of the foundation model companies survive is harder to call, but it already seems clear that OpenAI’s chain of interdependencies within Silicon Valley make it too big to fail. Still, a funding reckoning will force it to ratchet up pricing for its services.

Related work from others:  O'Reilly Media - Preparing for AI

When OpenAI was created in 2015, it pledged to “advance digital intelligence in the way that is most likely to benefit humanity as a whole.” That seems increasingly untenable. Sooner or later, the investors who bought in at a $500 billion price tag will push for returns. Those data centers won’t pay for themselves. By that point, many companies and individuals will have come to depend on ChatGPT or other AI services for their everyday workflows. Those able to pay will reap the productivity benefits, scooping up the excess computing power as others are priced out of the market.

Being able to layer several AI services on top of each other will provide a compounding effect. One example I heard on a recent trip to San Francisco: Ironing out the kinks in vibe coding is simply a matter of taking several passes at the same problem and then running a few more AI agents to look for bugs and security issues. That sounds incredibly GPU-intensive, implying that making AI really deliver on the current productivity promise will require customers to pay far more than most do today.

The same holds true in physical AI. I fully expect robotaxis to be commonplace in every major city by the end of the decade, and I even expect to see humanoid robots in many homes. But while Waymo’s Uber-like prices in San Francisco and the kinds of low-cost robots produced by China’s Unitree give the impression today that these will soon be affordable for all, the compute cost involved in making them useful and ubiquitous seems destined to turn them into luxuries for the well-off, at least in the near term.

The rest of us, meanwhile, will be left with an internet full of slop and unable to afford AI tools that actually work.

Perhaps some breakthrough in computational efficiency will avert this fate. But the current AI boom means Silicon Valley’s AI companies lack the incentives to make leaner models or experiment with radically different kinds of chips. That only raises the likelihood that the next wave of AI innovation will come from outside the US, be that China, India, or somewhere even farther afield.

Silicon Valley’s AI boom will surely end before 2030, but the race for global influence over the technology’s development—and the political arguments about how its benefits are distributed—seem set to continue well into the next decade. 

Related work from others:  Latest from MIT Tech Review - From pilot to scale: Making agentic AI work in health care

Will replies: 

I am with you that the cost of this technology is going to lead to a world of haves and have-nots. Even today, $200+ a month buys power users of ChatGPT or Gemini a very different experience from that of people on the free tier. That capability gap is certain to increase as model makers seek to recoup costs. 

We’re going to see massive global disparities too. In the Global North, adoption has been off the charts. A recent report from Microsoft’s AI Economy Institute notes that AI is the fastest-spreading technology in human history: “In less than three years, more than 1.2 billion people have used AI tools, a rate of adoption faster than the internet, the personal computer, or even the smartphone.” And yet AI is useless without ready access to electricity and the internet; swathes of the world still have neither. 

I still remain skeptical that we will see anything like the revolution that many insiders promise (and investors pray for) by 2030. When Microsoft talks about adoption here, it’s counting casual users rather than measuring long-term technological diffusion, which takes time. Meanwhile, casual users get bored and move on. 

How about this: If I live with a domestic robot in five years’ time, you can send your laundry to my house in a robotaxi any day of the week. 

JK! As if I could afford one. 

Further reading 

What is AI? It sounds like a stupid question, but it’s one that’s never been more urgent. In this deep dive, Will unpacks decades of spin and speculation to get to the heart of our collective technodream. 

AGI—the idea that machines will be as smart as humans—has hijacked an entire industry (and possibly the US economy). For MIT Technology Review’s recent New Conspiracy Age package, Will takes a provocative look at how AGI is like a conspiracy

The FT examined the economics of self-driving cars this summer, asking who will foot the multi-billion-dollar bill to buy enough robotaxis to serve a big city like London or New York.
A plausible counter-argument to Tim’s thesis on AI inequalities is that freely available open-source (or more accurately, “open weight”) models will keep pulling down prices. The US may want frontier models to be built on US chips but it is already losing the global south to Chinese software.

Share via
Copy link
Powered by Social Snap