Latest from Google AI – Building Efficient Multiple Visual Domain Models with Multi-path Neural Architecture Search

Posted by Qifei Wang, Senior Software Engineer, and Feng Yang, Senior Staff Software Engineer, Google Research Deep learning models for visual tasks (e.g., image classification) are usually trained end-to-end with data from a single visual domain (e.g., natural images or computer generated images). Typically, an application that completes visual tasks for multiple domains would need…

Latest from Google AI – Efficient Sequence Modeling for On-Device ML

Posted by Arun Kandoor, Software Engineer, Google Research The increasing demand for machine learning (ML) model inference on-device (for mobile devices, tablets, etc.) is driven by the rise of compute-intensive applications, the need to keep certain data on device for privacy and security reasons, and the desire to provide services when a network connection may…

Latest from MIT : New algorithm aces university math course questions

Multivariable calculus, differential equations, linear algebra — topics that many MIT students can ace without breaking a sweat — have consistently stumped machine learning models. The best models have only been able to answer elementary or high school-level math questions, and they don’t always find the correct solutions. Now, a multidisciplinary team of researchers from…

Latest from MIT : Why it’s a problem that pulse oximeters don’t work as well on patients of color

Pulse oximetry is a noninvasive test that measures the oxygen saturation level in a patient’s blood, and it has become an important tool for monitoring many patients, including those with Covid-19. But new research links faulty readings from pulse oximeters with racial disparities in health outcomes, potentially leading to higher rates of death and complications…

Latest from MIT : Using artificial intelligence to control digital manufacturing

Scientists and engineers are constantly developing new materials with unique properties that can be used for 3D printing, but figuring out how to print with these materials can be a complex, costly conundrum. Often, an expert operator must use manual trial-and-error — possibly making thousands of prints — to determine ideal parameters that consistently print…

Latest from Google AI – Enhancing Backpropagation via Local Loss Optimization

Posted by Ehsan Amid, Research Scientist, and Rohan Anil, Principal Engineer, Google Research, Brain Team While model design and training data are key ingredients in a deep neural network’s (DNN’s) success, less-often discussed is the specific optimization method used for updating the model parameters (weights). Training DNNs involves minimizing a loss function that measures the…

Latest from MIT : New hardware offers faster computation for artificial intelligence, with much less energy

As scientists push the boundaries of machine learning, the amount of time, energy, and money required to train increasingly complex neural network models is skyrocketing. A new area of artificial intelligence called analog deep learning promises faster computation with a fraction of the energy usage. Programmable resistors are the key building blocks in analog deep…

Latest from MIT Tech Review – DeepMind has predicted the structure of almost every protein known to science

DeepMind says its AlphaFold tool has successfully predicted the structure of nearly all proteins known to science. From today, the Alphabet-owned AI lab is offering its database of over 200 million proteins to anyone for free.  When DeepMind introduced AlphaFold in 2020, it took the science community by surprise. Scientists had spent decades trying to…

Latest from Google AI – Look and Talk: Natural Conversations with Google Assistant

Posted by Tuan Anh Nguyen, Google Assistant and Sourish Chaudhuri, Google Research In natural conversations, we don’t say people’s names every time we speak to each other. Instead, we rely on contextual signaling mechanisms to initiate conversations, and eye contact is often all it takes. Google Assistant, now available in more than 95 countries and…

Latest from Google AI – ML-Enhanced Code Completion Improves Developer Productivity

Posted by Maxim Tabachnyk, Staff Software Engineer and Stoyan Nikolov, Senior Engineering Manager, Google Research The increasing complexity of code poses a key challenge to productivity in software engineering. Code completion has been an essential tool that has helped mitigate this complexity in integrated development environments (IDEs). Conventionally, code completion suggestions are implemented with rule-based…