Latest from MIT : Exploring emerging topics in artificial intelligence policy

Members of the public sector, private sector, and academia convened for the second AI Policy Forum Symposium last month to explore critical directions and questions posed by artificial intelligence in our economies and societies. The virtual event, hosted by the AI Policy Forum (AIPF) — an undertaking by the MIT Schwarzman College of Computing to…

Latest from MIT Tech Review – Materials with nanoscale components will change what’s possible

In the 24 years I’ve worked as a materials scientist, I’ve always been inspired by hierarchical patterns found in nature that repeat all the way down to the molecular level. Such patterns induce remarkable properties—they strengthen our bones without making them heavy, give butterfly wings their color, and make a spiderweb silk both durable and…

Latest from MIT Tech Review – AI’s progress isn’t the same as creating human intelligence in machines

The term “artificial intelligence” really has two meanings. AI refers both to the fundamental scientific quest to build human intelligence into computers and to the work of modeling massive amounts of data. These two endeavors are very different, both in their ambitions and in the amount of progress they have made in recent years. Scientific…

Latest from MIT : Taking the guesswork out of dental care with artificial intelligence

When you picture a hospital radiologist, you might think of a specialist who sits in a dark room and spends hours poring over X-rays to make diagnoses. Contrast that with your dentist, who in addition to interpreting X-rays must also perform surgery, manage staff, communicate with patients, and run their business. When dentists analyze X-rays,…

UC Berkeley – FIGS: Attaining XGBoost-level performance with the interpretability and speed of CART

FIGS (Fast Interpretable Greedy-tree Sums): A method for building interpretable models by simultaneously growing an ensemble of decision trees in competition with one another. Recent machine-learning advances have led to increasingly complex predictive models, often at the cost of interpretability. We often need interpretability, particularly in high-stakes applications such as in clinical decision-making; interpretable models…

Latest from Google AI – Quantum Advantage in Learning from Experiments

Posted by Jarrod McClean, Staff Research Scientist, Google Quantum AI, and Hsin-Yuan Huang, Graduate Student, Caltech In efforts to learn about the quantum world, scientists face a big obstacle: their classical experience of the world. Whenever a quantum system is measured, the act of this measurement destroys the “quantumness” of the state. For example, if…

Latest from Google AI – Mapping Urban Trees Across North America with the Auto Arborist Dataset

Posted by Sara Beery, Student Researcher, and Jonathan Huang, Research Scientist, Google Research, Perception Team Over four billion people live in cities around the globe, and while most people interact daily with others — at the grocery store, on public transit, at work — they may take for granted their frequent interactions with the diverse…

Latest from MIT : Researchers release open-source photorealistic simulator for autonomous driving

Hyper-realistic virtual worlds have been heralded as the best driving schools for autonomous vehicles (AVs), since they’ve proven fruitful test beds for safely trying out dangerous driving scenarios. Tesla, Waymo, and other self-driving companies all rely heavily on data to enable expensive and proprietary photorealistic simulators, since testing and gathering nuanced I-almost-crashed data usually isn’t…