UC Berkeley – Unsupervised Skill Discovery with Contrastive Intrinsic Control
Unsupervised Reinforcement Learning (RL), where RL agents pre-train with self-supervised rewards, is an emerging paradigm for developing RL agents that are capable of generalization. Recently, we released the Unsupervised RL Benchmark (URLB) which we covered in a previous post. URLB benchmarked many unsupervised RL algorithms across three categories — competence-based, knowledge-based, and data-based algorithms. A…