O’Reilly Media – The Quality of Auto-Generated Code

Kevlin Henney and I were riffing on some ideas about GitHub Copilot, the tool for automatically generating code base on GPT-3’s language model, trained on the body of code that’s in GitHub. This article poses some questions and (perhaps) some answers, without trying to present any conclusions. First, we wondered about code quality. There are…

O’Reilly Media – 2021 Data/AI Salary Survey

In June 2021, we asked the recipients of our Data & AI Newsletter to respond to a survey about compensation. The results gave us insight into what our subscribers are paid, where they’re located, what industries they work for, what their concerns are, and what sorts of career development opportunities they’re pursuing. While it’s sadly premature to…

O’Reilly Media – Communal Computing’s Many Problems

In the first article of this series, we discussed communal computing devices and the problems they create–or, more precisely, the problems that arise because we don’t really understand what “communal” means. Communal devices are intended to be used by groups of people in homes and offices. Examples include popular home assistants and smart displays like…

O’Reilly Media – AI Powered Misinformation and Manipulation at Scale #GPT-3

OpenAI’s text generating system GPT-3 has captured mainstream attention. GPT-3 is essentially an auto-complete bot whose underlying Machine Learning (ML) model has been trained on vast quantities of text available on the Internet. The output produced from this autocomplete bot can be used to manipulate people on social media and spew political propaganda, argue about…

UC Berkeley – Sequence Modeling Solutions
for Reinforcement Learning Problems

Sequence Modeling Solutions for Reinforcement Learning Problems Long-horizon predictions of (top) the Trajectory Transformer compared to those of (bottom) a single-step dynamics model. Modern machine learning success stories often have one thing in common: they use methods that scale gracefully with ever-increasing amounts of data. This is particularly clear from recent advances in sequence modeling,…

UC Berkeley – Which Mutual Information Representation Learning Objectives are Sufficient for Control?

Processing raw sensory inputs is crucial for applying deep RL algorithms to real-world problems. For example, autonomous vehicles must make decisions about how to drive safely given information flowing from cameras, radar, and microphones about the conditions of the road, traffic signals, and other cars and pedestrians. However, direct “end-to-end” RL that maps sensor data…

UC Berkeley – Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets

Fig. 1: The BRIDGE dataset contains 7200 demonstrations of kitchen-themed manipulation tasks across 71 tasks in 10 domains. Note that any GIF compression artifacts in this animation are not present in the dataset itself. When we apply robot learning methods to real-world systems, we must usually collect new datasets for every task, every robot, and…

UC Berkeley – Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability

Many experimental works have observed that generalization in deep RL appears to be difficult: although RL agents can learn to perform very complex tasks, they don’t seem to generalize over diverse task distributions as well as the excellent generalization of supervised deep nets might lead us to expect. In this blog post, we will aim…

UC Berkeley – RECON: Learning to Explore the Real World with a Ground Robot

An example of our method deployed on a Clearpath Jackal ground robot (left) exploring a suburban environment to find a visual target (inset). (Right) Egocentric observations of the robot. Imagine you’re in an unfamiliar neighborhood with no house numbers and I give you a photo that I took a few days ago of my house,…