Latest from MIT : A method to interpret AI might not be so interpretable after all

As autonomous systems and artificial intelligence become increasingly common in daily life, new methods are emerging to help humans check that these systems are behaving as expected. One method, called formal specifications, uses mathematical formulas that can be translated into natural-language expressions. Some researchers claim that this method can be used to spell out decisions…

Latest from MIT Tech Review – Minds of machines: The great AI consciousness conundrum

David Chalmers was not expecting the invitation he received in September of last year. As a leading authority on consciousness, Chalmers regularly circles the world delivering talks at universities and academic meetings to rapt audiences of philosophers—the sort of people who might spend hours debating whether the world outside their own heads is real and…

Latest from Google AI – Batch calibration: Rethinking calibration for in-context learning and prompt engineering

Posted by Han Zhou, Student Researcher, and Subhrajit Roy, Senior Research Scientist, Google Research Prompting large language models (LLMs) has become an efficient learning paradigm for adapting LLMs to a new task by conditioning on human-designed instructions. The remarkable in-context learning (ICL) ability of LLMs also leads to efficient few-shot learners that can generalize from…

Latest from Google AI – Developing industrial use cases for physical simulation on future error-corrected quantum computers

Posted by Nicholas Rubin, Senior Research Scientist, and Ryan Babbush, Head of Quantum Algorithms, Quantum AI Team If you’ve paid attention to the quantum computing space, you’ve heard the claim that in the future, quantum computers will solve certain problems exponentially more efficiently than classical computers can. They have the potential to transform many industries,…

Latest from MIT Tech Review – Generative AI deployment: Strategies for smooth scaling

After a procession of overhyped technologies like Web3, the metaverse, and blockchain, executives are bracing for the tidal wave of generative AI, a shift some consider to be on par with the advent of the internet or the desktop computer. But with power comes responsibility, and generative AI offers as much risk as reward. The…

O’Reilly Media – Automated Mentoring with ChatGPT

Ethan and Lilach Mollick’s paper Assigning AI: Seven Approaches for Students with Prompts explores seven ways to use AI in teaching. (While this paper is eminently readable, there is a non-academic version in Ethan Mollick’s Substack.) The article describes seven roles that an AI bot like ChatGPT might play in the education process: Mentor, Tutor,…

Latest from MIT Tech Review – Are we ready to trust AI with our bodies?

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here. I hate going to the gym. Last year I hired a personal trainer for six months in the hope she would brainwash me into adopting healthy exercise habits longer-term. It was…

Latest from Google AI – SANPO: A Scene understanding, Accessibility, Navigation, Pathfinding, & Obstacle avoidance dataset

Posted by Sagar M. Waghmare, Senior Software Engineer, and Kimberly Wilber, Software Engineer, Google Research, Perception Team As most people navigate their everyday world, they process visual input from the environment using an eye-level perspective. Unlike robots and self-driving cars, people don’t have any “out-of-body” sensors to help guide them. Instead, a person’s sensory input…

Latest from MIT : New tools are available to help reduce the energy that AI models devour

When searching for flights on Google, you may have noticed that each flight’s carbon-emission estimate is now presented next to its cost. It’s a way to inform customers about their environmental impact, and to let them factor this information into their decision-making. A similar kind of transparency doesn’t yet exist for the computing industry, despite…

Latest from MIT Tech Review – Driving companywide efficiencies with AI

Autonomous shopping carts that follow grocery store customers and robots that pick ripe cucumbers faster than humans may grab headlines, but the most compelling applications of AI and ML technology are behind the scenes. Increasingly, organizations are finding substantial efficiency gains by applying AI- and ML-powered tools to back-office procedures such as document processing, data…