Latest from Google AI – Intervening on early readouts for mitigating spurious features and simplicity bias
Posted by Rishabh Tiwari, Pre-doctoral Researcher, and Pradeep Shenoy, Research Scientist, Google Research Machine learning models in the real world are often trained on limited data that may contain unintended statistical biases. For example, in the CELEBA celebrity image dataset, a disproportionate number of female celebrities have blond hair, leading to classifiers incorrectly predicting “blond”…