O’Reilly Media – AI Powered Misinformation and Manipulation at Scale #GPT-3

OpenAI’s text generating system GPT-3 has captured mainstream attention. GPT-3 is essentially an auto-complete bot whose underlying Machine Learning (ML) model has been trained on vast quantities of text available on the Internet. The output produced from this autocomplete bot can be used to manipulate people on social media and spew political propaganda, argue about…

O’Reilly Media – The Next Generation of AI

Programs like AlphaZero and GPT-3 are massive accomplishments: they represent years of sustained work solving a difficult problem. But these problems are squarely within the domain of traditional AI. Playing Chess and Go or building ever-better language models have been AI projects for decades. The following projects have a different flavor: In February, PLOS Genetics…

UC Berkeley – Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets

Fig. 1: The BRIDGE dataset contains 7200 demonstrations of kitchen-themed manipulation tasks across 71 tasks in 10 domains. Note that any GIF compression artifacts in this animation are not present in the dataset itself. When we apply robot learning methods to real-world systems, we must usually collect new datasets for every task, every robot, and…

UC Berkeley – Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability

Many experimental works have observed that generalization in deep RL appears to be difficult: although RL agents can learn to perform very complex tasks, they don’t seem to generalize over diverse task distributions as well as the excellent generalization of supervised deep nets might lead us to expect. In this blog post, we will aim…

UC Berkeley – RECON: Learning to Explore the Real World with a Ground Robot

An example of our method deployed on a Clearpath Jackal ground robot (left) exploring a suburban environment to find a visual target (inset). (Right) Egocentric observations of the robot. Imagine you’re in an unfamiliar neighborhood with no house numbers and I give you a photo that I took a few days ago of my house,…

UC Berkeley – Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability

Many experimental works have observed that generalization in deep RL appears to be difficult: although RL agents can learn to perform very complex tasks, they don’t seem to generalize over diverse task distributions as well as the excellent generalization of supervised deep nets might lead us to expect. In this blog post, we will aim…